Preço de opções: modelo de Black-Scholes O modelo de Black-Scholes para calcular o prêmio de uma opção foi introduzido em 1973 em um artigo intitulado The Pricing of Options and Corporate Liabilities publicado no Journal of Political Economy. A fórmula, desenvolvida por três economistas Fischer Black, Myron Scholes e Robert Merton é talvez o modelo de preços de opções mais conhecido do mundo. Black faleceu dois anos antes de Scholes e Merton receberam o Prêmio Nobel de Economia de 1997 por seu trabalho em encontrar um novo método para determinar o valor dos derivativos (o Prêmio Nobel não é dado póstumo, no entanto, o comitê do Nobel reconheceu o papel dos negros no preto Modelo Scholes). O modelo Black-Scholes é usado para calcular o preço teórico das opções européias de colocação e compra, ignorando quaisquer dividendos pagos durante a vida útil das opções. Embora o modelo original de Black-Scholes não tenha levado em consideração os efeitos dos dividendos pagos durante a vida da opção, o modelo pode ser adaptado para contabilizar os dividendos, determinando o valor da data do dividendo do estoque subjacente. O modelo faz certas premissas, incluindo: As opções são europeias e só podem ser exercidas no vencimento. Nenhum dividendo é pago durante a vida da opção. Mercados eficientes (ou seja, os movimentos do mercado não podem ser previstos). Sem comissões. A taxa de risco e a volatilidade de O subjacente é conhecido e constante segue uma distribuição lognormal que é, os retornos sobre o subjacente são normalmente distribuídos. A fórmula, mostrada na Figura 4, leva em consideração as seguintes variáveis: preço subjacente atual Opções preço de exercício Tempo até o vencimento, expresso em percentual do ano Vulitabilidade implícita Taxas de juros livres de risco Figura 4: A fórmula de precificação Black-Scholes para chamada Opções. O modelo é essencialmente dividido em duas partes: a primeira parte, SN (d1). Multiplica o preço pela variação do prémio de chamada em relação a uma alteração no preço subjacente. Esta parte da fórmula mostra o benefício esperado de comprar o subjacente definitivo. A segunda parte, N (d2) Ke (-rt). Fornece o valor atual de pagar o preço de exercício no vencimento (lembre-se, o modelo de Black-Scholes aplica-se a opções européias que são exercíveis apenas no dia do vencimento). O valor da opção é calculado tomando a diferença entre as duas partes, como mostrado na equação. A matemática envolvida na fórmula é complicada e pode ser intimidante. Felizmente, no entanto, os comerciantes e os investidores não precisam saber nem entender a matemática para aplicar o modelo de Black-Scholes em suas próprias estratégias. Como mencionado anteriormente, os comerciantes de opções têm acesso a uma variedade de calculadoras de opções on-line e muitas das plataformas de negociação de hoje possuem ferramentas de análise de opções robustas, incluindo indicadores e planilhas que executam os cálculos e produzem os valores de preços das opções. Um exemplo de uma calculadora on-line Black-Scholes é mostrado na Figura 5 para que o usuário deve inserir todas as cinco variáveis (preço de operação, preço das ações, tempo (dias), volatilidade e taxa de juros livre de risco). Figura 5: Uma calculadora Black-Scholes online pode ser usada para obter valores para ambas as chamadas e colocações. Os usuários devem inserir os campos necessários e a calculadora faz o resto. Calculadora cortesia tradingtodayUsando a Black-Scholes para colocar um valor nas opções de ações (LifeWire) - Durante anos, as empresas que pagaram opções de compra de ações poderiam evitar deduzir o custo dessas opções como uma despesa. As regras mudaram em 2005, quando o setor de contabilidade atualizou suas diretrizes sobre pagamentos baseados em compartilhamento, em uma regra chamada FAS 123 (R). Hoje, as empresas geralmente escolhem entre um dos dois métodos para avaliar o custo de oferecer a um empregado uma opção de estoque: um modelo de Black-Scholes ou um modelo de rede. Seja qual for a escolha, eles devem deduzir a despesa de opções de seus lucros, reduzindo os ganhos por ação. O modelo Black-Scholes é uma fórmula vencedora do Prêmio Nobel que pode determinar o valor teórico de uma opção com base em uma série de variáveis. Como as opções concedem aos empregados réplicas de opções negociadas em bolsa, as regras de Black-Scholes exigem alguma modificação para opções de funcionários. A equação dos modelos é complexa, mas as variáveis são simples de entender. Eles também são úteis na determinação das conseqüências do investimento em empresas cujas ações possuem maior volatilidade. Para ver se uma empresa usa o Black-Scholes para valorar suas opções e os pressupostos que faz sobre as opções, verifique seu último relatório trimestral 10-Q no site da Securities and Exchange Commission. Por que as opções são difíceis de valor Quando uma empresa dá um bônus em dinheiro de 1 milhão ao diretor-presidente, o custo é claro. Mas, quando dá ao CEO o direito de comprar um milhão de ações em 25 por ação em algum momento no futuro, o custo não é fácil de figurar. Por exemplo, a opção pode tornar-se inútil se o estoque nunca subir acima de 25 durante o tempo que a opção for válida. Black-Scholes pode determinar o custo teórico da opção na data em que é emitido para o empregado. Três fatores geralmente afetam o preço de uma opção sob Black-Scholes, de acordo com o Options Industry Council, um grupo comercial: o valor intrínseco das opções. A probabilidade de uma mudança significativa no estoque. O custo do dinheiro, ou as taxas de juros. O modelo de precificação de Black-Scholes considera o preço atual de uma ação e o preço-alvo como duas variáveis críticas ao colocar um preço em uma opção. Uma opção de compra, você pode se lembrar, dá ao titular o direito de comprar um estoque a um preço-alvo fixo dentro de um período de tempo especificado, não importa o quão alto o estoque subisse. Considere duas opções de compra no mesmo 10 ações - uma com um preço-alvo de 12 e uma com um preço-alvo de 15. Um investidor pagaria mais pela opção com um preço-alvo de 12, pois as ações precisariam aumentar apenas 2,01 para A opção de se tornar valiosa, ou no dinheiro. Observe que esses fatores geralmente são menos significativos para opções de estoque de empregados. Isso porque as empresas geralmente emitem opções de funcionários com um preço-alvo idêntico ao preço de mercado no dia da emissão das opções. Probabilidade de mudança significativa: o tempo até a opção expirar No modelo Black-Scholes, uma opção com uma vida útil mais longa é mais valiosa do que uma opção idêntica que expira mais cedo. Isso faz sentido lógico: com mais tempo para trocar, um estoque tem uma chance maior de superar seu preço-alvo. Para ilustrar, considere duas opções de chamadas idênticas em ações da ABT Corp. e assumir que atualmente é negociada por 37 partes. A opção que expira em novembro tem quatro meses adicionais para aumentar acima de 43, por isso será mais valioso do que uma opção de julho idêntica. As opções de estoque de empregados muitas vezes expiram muitos anos na estrada, às vezes uma década depois. Mas os funcionários muitas vezes exercitam opções muito antes de expirarem. Como resultado, as empresas não precisam assumir que a opção será exercida no último dia de validade. Ao calcular o custo de uma opção, as empresas geralmente assumirão um período mais curto - digamos, quatro anos para uma opção de 10 anos. Faz sentido por que eles queriam fazer isso: sob Black-Scholes, termos mais curtos reduzem o valor de uma opção e, assim, reduzem o custo da concessão de opções para a empresa. Probabilidade de mudança significativa: volatilidade com Black-Scholes, a volatilidade é dourada. Considere duas empresas, a Boring Story Inc. e a Wild Child Corp., que ambas acontecem ao comércio por 25 partes. Agora, considere uma opção de 30 chamadas nesses estoques. Para que essas opções se tornem no dinheiro, as ações precisarão aumentar em 5 antes da expiração da opção. Do ponto de vista dos investidores, a opção "Criança Selvagem" - que flui no mercado - seria, naturalmente, mais valiosa do que a opção na história chata, que históricamente mudou muito pouco para o dia. Existem várias maneiras de medir a volatilidade, mas todos eles visam mostrar uma tendência de estoque para subir e cair. A implicação para os investidores é que as empresas cujos preços das ações são mais voláteis pagarão um preço mais alto para emitir opções aos empregados. Taxas de juros mais elevadas aumentam o valor de uma opção de compra, aumentando o custo de emissão de opções de ações para os funcionários. Quando o Federal Reserve aumenta as taxas de juros, isso tende a tornar as opções de ações mais caras para as empresas. As taxas afetam os preços das opções devido à importância do valor do tempo em dinheiro nas opções. Considere uma pessoa comprando opções para 100 ações da ManyPenny Inc. com um preço-alvo de 20. O investidor pode pagar apenas um pequeno montante para a opção, mas pode reservar 2.000 para cobrir o eventual custo de exercer a opção e comprar as 100 ações da estoque. Quando as taxas de juros aumentam, o comprador das opções pode ganhar mais interesse nessa reserva de 2.000. Como resultado, quando as taxas de juros são mais altas, os compradores de opções de compra geralmente estão dispostos a pagar mais por uma opção. Para mais informações O Financial Accounting Standards Board, um conselho independente que estabelece procedimentos contábeis padrão, fornece uma declaração on-line sobre sua regra FAS 123 (R). Que diz respeito ao preço das opções de compra de ações dos empregados e outra remuneração baseada em ações. O Conselho de Indústria de Opções oferece um tutorial on-line sobre preços de opções. A Real Academia Sueca de Ciências publica sua citação a partir de 1997, quando concedeu o Prêmio Nobel de Economia a Robert C. Merton e Myron S. Scholes, que, em colaboração com o falecido Fischer Black, desenvolveram o modelo de previsão da opção Black-Scholes. Calculadora ERIs Black-Scholes Esta calculadora on-line usa a equação de Black-Scholes para o valor justo de uma opção de compra européia em um estoque não dividendo, da seguinte forma: Uma opção de chamada européia só pode ser exercida na data de validade. Isso contrasta com as opções americanas que podem ser exercidas em qualquer momento antes do vencimento. Uma opção europeia é usada para reduzir as variáveis na equação. Isso é aceitável, uma vez que a maioria das opções de compra de ações da empresa norte-americana não são exercidas até a data de expiração (aquisição). Por que, quando um funcionário faz uma chamada cedo, ele perde o valor do tempo restante na chamada e cobra apenas o valor intrínseco. Disclaimer: Esta Calculadora Black-Scholes não se destina como base para decisões comerciais. Nenhuma responsabilidade é assumida por sua correção ou adequação para qualquer propósito. Use por sua conta e risco. Para saber mais sobre como usar o método Black-Scholes para colocar um valor nas opções de estoque, consulte o curso on-line do Centro de Aprendizado a Distância ERI, Black-Scholes Valuations. Definições Black Scholes relevantes (todos os valores são por ação) O Modelo de Preços de Opções Black Scholes determina o valor justo de mercado das opções européias, mas também pode ser usado para valorizar as opções americanas. A fórmula atual pode ser vista aqui. Stock Asset Price Um preço atual das ações, negociado publicamente ou estimado. Preço de exercicio de opção Preço pré-determinado (pelo escritor de opções) no qual uma compra de opções é comprada ou vendida. Maturidade (Tempo até a expiração) Tempo restante para a data de validade da opção. Taxa de juros sem risco Taxa de juros atual dos títulos públicos de curto prazo, como as do Tesouro dos EUA. Grau de mudança imprevisível ao longo do tempo de um preço das ações de opções, muitas vezes expresso como o desvio padrão do preço das ações. Valor justo no mercado norte-americano de uma opção exercida no vencimento. Uma opção de compra dá ao comprador (titular da opção) o direito de comprar ações do vendedor (o escritor da opção) ao preço de exercício. Valor justo no mercado norte-americano de uma opção exercida no vencimento. Uma opção de venda oferece ao comprador (titular da opção) o direito de vender as ações compradas para o escritor da opção ao preço de exercício. Uma opção europeia só pode ser exercida no prazo de validade. Uma opção americana pode ser exercida a qualquer momento durante a vida da opção. No entanto, na maioria dos casos, é aceitável valorizar uma opção americana usando o modelo Black Scholes, porque as opções americanas raramente são exercidas antes da data de validade.
No comments:
Post a Comment